Hessenberg–Sobolev Matrices and Favard Type Theorem

نویسندگان

چکیده

Abstract We study the relation between certain non-degenerate lower Hessenberg infinite matrices $${\mathcal {G}}$$ G and existence of sequences orthogonal polynomials with respect to Sobolev inner products. In other words, we extend well-known Favard theorem for orthogonality. characterize structure matrix associated formal moments {M}}_{{\mathcal {G}}}$$ M in terms operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Favard theorem for reproducing kernels

Consider for n = 0, 1, . . . the nested spaces Ln of rational functions of degree n at most with given poles 1/αi, |αi| < 1, i = 1, . . . , n. Let L = ∪0 Ln. Given a finite positive measure μ on the unit circle, we associate with it an inner product on L by 〈f, g〉 = ∫ fgdμ. Suppose kn(z, w) is the reproducing kernel for Ln, i.e., 〈f(z), kn(z, w)〉 = f(w), for all f ∈ Ln, |w| < 1, then it is know...

متن کامل

Orthogonal rational functions with complex poles: The Favard theorem

Let {φn} be a sequence of rational functions with arbitrary complex poles, generated by a certain three-term recurrence relation. In this paper we show that under some mild conditions, the rational functions φn form an orthonormal system with respect to a Hermitian positive-definite inner product.

متن کامل

A Favard theorem for rational functions with complex poles

Let {φn} be a sequence of rational functions with arbitrary complex poles, generated by a certain three-term recurrence relation. In this paper we show that under some mild conditions the rational functions φn form an orthonormal system with respect to a Hermitian positive-definite inner product.

متن کامل

A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula

The objective of this manuscript is to study directly the Favard type theorem associated with the three term recurrence formula Rn+1(z) =  (1 + icn+1)z + (1 − icn+1)  Rn(z) − 4dn+1z Rn−1(z), n ≥ 1, with R0(z) = 1 and R1(z) = (1 + ic1)z + (1 − ic1), where {cn} ∞ n=1 is a real sequence and {dn} ∞ n=1 is a positive chain sequence. We establish that there exists a unique nontrivial probability me...

متن کامل

Stancu type generalization of the Favard-Szàsz operators

In this paper, we introduce a Stancu type generalization of the q−Favard-Szàsz operators, estimate the rates of statistical convergence and study the local approximation properties of these operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society

سال: 2022

ISSN: ['2180-4206', '0126-6705']

DOI: https://doi.org/10.1007/s40840-022-01445-3